Invasive Shrub Mapping in an Urban Environment from Hyperspectral and LiDAR-Derived Attributes

نویسندگان

  • Curtis M. Chance
  • Nicholas C. Coops
  • Andrew A. Plowright
  • Thoreau R. Tooke
  • Andreas Christen
  • Neal Aven
چکیده

Proactive management of invasive species in urban areas is critical to restricting their overall distribution. The objective of this work is to determine whether advanced remote sensing technologies can help to detect invasions effectively and efficiently in complex urban ecosystems such as parks. In Surrey, BC, Canada, Himalayan blackberry (Rubus armeniacus) and English ivy (Hedera helix) are two invasive shrub species that can negatively affect native ecosystems in cities and managed urban parks. Random forest (RF) models were created to detect these two species using a combination of hyperspectral imagery, and light detection and ranging (LiDAR) data. LiDAR-derived predictor variables included irradiance models, canopy structural characteristics, and orographic variables. RF detection accuracy ranged from 77.8 to 87.8% for Himalayan blackberry and 81.9 to 82.1% for English ivy, with open areas classified more accurately than areas under canopy cover. English ivy was predicted to occur across a greater area than Himalayan blackberry both within parks and across the entire city. Both Himalayan blackberry and English ivy were mostly located in clusters according to a Local Moran's I analysis. The occurrence of both species decreased as the distance from roads increased. This study shows the feasibility of producing highly accurate detection maps of plant invasions in urban environments using a fusion of remotely sensed data, as well as the ability to use these products to guide management decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data

Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...

متن کامل

Urban Vegetation Mapping from Fused Hyperspectral Image and LiDAR Data with Application to Monitor Urban Tree Heights

Urban vegetations have infinite proven benefits for urban inhabitants including providing shade, improving air quality, and enhancing the look and feel of communities. But creating a complete inventory is a time consuming and resource intensive process. The extraction of urban vegetation is a challenging task, especially to monitor the urban tree heights. In this study we present an efficient e...

متن کامل

Synergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping

Land cover mapping of the urban environment by means of remote sensing remains a distinct challenge due to the strong spectral heterogeneity and geometric complexity of urban scenes. Airborne imaging spectroscopy and laser altimetry have each made remarkable contributions to urban mapping but synergistic use of these relatively recent data sources in an urban context is still largely underexplo...

متن کامل

Combining Hyperspectral and Lidar Data for Vegetation Mapping in the Florida Everglades

This study explored a combination of hyperspectral and lidar systems for vegetation mapping in the Florida Everglades. A framework was designed to integrate two remotely sensed datasets and four data processing techniques. Lidar elevation and intensity features were extracted from the original point cloud data to avoid the errors and uncertainties in the raster-based lidar methods. Lidar signif...

متن کامل

Mapping natural and urban environments using airborne multi-sensor ADS40-MIVIS-LiDAR synergies

The recent and forthcoming availability of high spatial resolution imagery from satellite and airborne sensors offers the possibility to generate an increasing number of remote sensing products and opens new promising opportunities for multi-sensor classification. Data fusion strategies, applied to modern airborne Earth observation systems, including hyperspectral MIVIS, color-infrared ADS40, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016